
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2020/2021

Determining Lowest Risk Path in the game Slay

The Spire using A* Algorithm

Ilyasa Salafi Putra Jamal - 13519023

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail (gmail): 13519023@std.stei.itb.ac.id

Abstract—Slay The Spire is a roguelike deckbuilder game

developed by Mega Crit Games. As a roguelike, the game uses

random generation to craft its map. The game will randomly

generate several interconnected paths for each map, each with

randomly selected encounters. Any player must choose which

path to go in order to progress the game. A pathfinding

algorithm can be used here to help evaluate all possible paths.

This paper explores the idea by using A* Algorithm to assist in

finding lowest risk path possible.

Keywords—Path; Encounter; Risk; Heuristic; Game

I. INTRODUCTION

Slay The Spire is commonly set as an example of a modern

roguelike game. Roguelike games are usually described as

games with permadeath mechanic, prosedurally or randomly

generated play area, and some kind of character progression

system, terms that describe Slay The Spire well. The term

‘roguelike’ originates from a game developed in 1980 called

Rogue. The game had ASCII interface and uses plenty of

randomization in its gameplay mechanics, a notable

randomization used was the randomized levels generated for

each playthrough. The game then quickly gain popularity in

the UNIX community.

Figure 1. Rogue(1980) (Source:
https://web.archive.org/web/20160919020229/http://insight.ieeeusa.org/insight/
content/views/371703)

Games similar to Rogue then starts to appear, further

spreading the popularity of, at the time, a new genre of game,

now known as ‘roguelike’. An attempt to define the genre is

then made. During the International Roguelike Development

Conference held in 2008 in Berlin, a definition has been made

for the genre, now known as the ‘Berlin Interpretation’.

The Berlin Interpretation lists several factors that

determines whether or not a game is a roguelike game. Some

notable factors are random environment generation,

permadeath, high complexity/difficulty/challenge, and

resource management.

In the last few years, there has been an increase of interest

in roguelike games, or roguelikes. Several newer roguelike

games have gained high amount of popularity and success,

games such as Hades, Darkest Dungeon, Risk of Rain,

Monster Train, and Slay The Spire.

As a roguelike game, Slay The Spire also uses random

generation for creating the game’s map. During map

generation, Slay The Spire randomly generates several

interconnected paths that leads to a randomly selected boss.

The paths are also populated with an assortment of encounters,

each with plenty of variations that are randomly chosen. Any

player is required to go through these random paths in order to

progress and ultimately beat the game.

Unfortunately, knowing which path is the optimal path is a

very difficult task. The interconnected paths mean there can be

hundreds of possible paths to go through. This is not helped by

the fact that the map is always randomly generated for each

run, making learning to spot the most optimal path an even

harder task.

Fortunately, paths on the game can still be coldly analyzed

by pathfinding algorithms. While in most cases it will not

provide the most optimal path, pathfinding algorithms can still

assist player in determining the optimal path by highlighting

several notable paths, such as the lowest and highest risk

paths. This paper explores that particular idea by utilizing the

currently best pathfinding algorithm, the A* Algorithm, to

find the lowest risk path on a particular map from the game.

II. THEORETICAL FOUNDATIONS

A. Graph

 A graph is defined as a tuple of two sets, a non-empty set
of vertices and a set of edges. Graphs are used to represent the
discrete objects and the relation between said objects. The
objects are represented as the vertices, while the edges
represent the relation between the objects. Mathematically, it is

https://web.archive.org/web/20160919020229/http:/insight.ieeeusa.org/insight/content/views/371703
https://web.archive.org/web/20160919020229/http:/insight.ieeeusa.org/insight/content/views/371703

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2020/2021

usually represented as G = (V, E), where G is the graph itself,
V is the non-empty set of vertices and E is the set of edges.

Figure 2. Directed graph (Source:
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2020-2021/Graf-2020-
Bagian1.pdf)

This paper uses a type of graph called directed graph or
digraph. In this type of graph, every edges is given a directional
orientation. This paper also uses weighted graph concept.
Every edges in a weighted graph is given a numerical value
that determines its priority or ‘weight’.

Figure 3. Weighted graph (Source:
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/Route-
Planning-Bagian1-2021.pdf)

B. Breadth First Search

Breadth First Search (from this point on will be referred as

BFS) is a type of uninformed or blind search algorithm,

meaning no information about the goal is needed for this

algorithm to function. BFS searches a path in a graph to the

goal by expanding search or visit from a node to its

neighboring nodes. It will then continue expanding in the

same manner for each neighbor nodes until it reaches the goal

node, or all nodes has been searched or visited. It is a

relatively simple algorithm that is capable of determining the

least steps to reach the goal. However, this algorithm

considers that steps = cost and does not consider differing

weight or cost for visiting each nodes.

C. Uniform Cost Search / Dijkstra’s Algorithm

Djikstra’s Algorithm or Uniform Cost Search (from this

point on will be referred as UCS) is a type of uninformed

search similar to BFS. This algorithm expands BFS by

prioritizing which node to search or visit based on their weight

or cost, either smallest or biggest first. Other than that, it

works similarly to BFS. It is capable of determining the least

(or most) weight or cost to reach the goal. UCS, however, still

blindly searches every node and thus is prone to wasted

searches due to not having information about the goal.

D. Greedy Best First Search

Greedy Best First Search (from this point on will be

referred as GBFS) is a type of informed search algorithm,

meaning it needed information on the goal and searches paths

based on that information. The information provided is usually

in the form of heuristics relevant to the search. The value of an

admissible heuristic must always conform to this equation:

h(n) ≤ h*(n) (1)

Where h(n) is the heuristic cost from n to goal and h*(n) is the

true cost from n to goal. This means admissible heuristics

never overestimate the cost to reach the goal.

GBFS works by expanding search or visit to neighboring

nodes that appears to be closest to the goal based on the

heuristics given. Because of that, GBFS is faster and more

efficient compared to UCS, as it only searches ‘promising’

nodes. However, GBFS is prone to local plateu and dead-ends

due to the nature of heuristics. When that happens, GBFS will

need backtrack to other ‘promising’ nodes, thus yielding sub-

optimal paths.

E. A* Algorithm

A* Algorithm (read: A star) is a type of informed search

algorithm similar to GBFS. This algorithm combines the

accuracy of UCS and the heuristics from GBFS to consistently

find optimal paths with a more reasonable time and efficiency.

A* algorithm uses the following evaluation function to

determine which node to expand:

f(n) = g(n) + h(n) (2)

Where f(n) is the estimated total cost of the path through n to

goal, g(n) is the total cost taken so far to reach n, and h(n) is

the estimated cost from n to goal.

The g(n) part of the function is similar to how UCS

evaluates which node to expand to, while h(n) is similar to

how GBFS evaluates its expansion with heuristics. After

evaluating, the algorithm then expands its search to the node

with the most optimal f(n) value. This usually means the

smallest value available.

F. Slay The Spire

Figure 4. Slay The Spire (Source:
https://store.steampowered.com/app/646570/Slay_the_Spire/)

Slay The Spire is a roguelike deckbuilder video game

developed by MegaCrit. The game entered early access in late

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2020-2021/Graf-2020-Bagian1.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2020-2021/Graf-2020-Bagian1.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/Route-Planning-Bagian1-2021.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/Route-Planning-Bagian1-2021.pdf
https://store.steampowered.com/app/646570/Slay_the_Spire/

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2020/2021

2017 and was officially released in January 2019. As of this

writing, Slay The Spire is available for Windows, Linux,

macOS, Nintendo Switch, PS4, Xbox One, iOS, and Android.

In Slay The Spire, the player plays as one of the four different

characters. The player then go through a randomly generated

map filled with enemies, resting places, and random events.

Figure 5. Slay The Spire combat (Source:
https://store.steampowered.com/app/646570/Slay_the_Spire/)

Slay The Spire offers combat with a turn-based system,

similar to that of traditional RPGs, with a key difference. The

difference lies in what actions the player can take during his

turn. Actions available in a turn is dictated through cards

drawn from a shuffled deck. The player can alter the deck

through various encounters on the map. Each action also has

an energy cost and the player only has a limited amount of

energy each turn.

The game is divided into three or four acts. Each act has its

own randomly generated map with several possible paths to

the boss of the act. The boss of each act is randomly selected

from the three possible choices for each act. Each act also

contains its own pool of enemies, elites, and random events.

Figure 6. Slay The Spire’s randomly generated map (Source: Screenshot taken
from the game)

In every act, the player can choose from several randomly

generated paths on the map. Each path have a certain

encounter associated with it, such as entering combat with

regular or elite enemy, opening treasure chests, trading with a

merchant, etc. Each encounter has its own risks and rewards.

For example, fighting an elite is a very risky move, but is also

greatly rewarded. The success of a run often depends on

managing risks like this. This paper focuses on this aspect of

the game.

III. DETERMINING LOWEST RISK PATHS

Before you begin to format your paper, first write and save
the content as a separate text file. Keep your text and graphic
files separate until after the text has been formatted and styled.
Do not use hard tabs, and limit use of hard returns to only one
return at the end of a paragraph. Do not add any kind of
pagination anywhere in the paper. Do not number text heads-
the template will do that for you.

Finally, complete content and organizational editing before
formatting. Please take note of the following items when
proofreading spelling and grammar:

A. Types of Encounters and Their Associated Risks

Figure 7. Encounters legend (Source: Screenshot taken from the game)

 Including boss encounter, there are seven types of
encounters possible, eight if the player has completed the game
atleast once with the first three characters. Each encounter has
its own risk and reward associated with it.

• Boss

Figure 8. Boss encounters (Source: Screenshot taken from the game)

Boss encounters are always encountered at the end of an
act. The symbol shown is determined by the type of boss
selected by the game. For example on the left is a symbol for
Hexaghost while on the right is a symbol for Slime Boss.
Defeating the bosses of each act is necessary to progress
through the game. As such, these encounters are unavoidable
risks and serve as the ‘goal’ for the algorithm.

• Rest Site

Figure 9. Rest site encounter (Source: Screenshot taken from the game)

https://store.steampowered.com/app/646570/Slay_the_Spire/

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2020/2021

In rest site encounter, the player can either rest to regain
some lost hp, or smith to upgrade a card from the deck. There
can also be several more actions that can be taken, such as
recall, dig, toke (or smoke) and lift weights. The recall action is
only available after completing the game atleast once with the
first three characters, while other additional actions are gained
through the rewards gained during the run. Because its purely
beneficial nature, this encounter has little to no risk associated
with it.

• Treasure Room

Figure 10. Treasure room encounter (Source: Screenshot taken from the game)

Treasure room encounters reward player with a randomly
selected artifact which grants various passive effects. The
artifact can have a varying degree of effect on the run, from
having almost no effect to game-breakingly strong. While the
reward can vary, this encounter is still purely beneficial to the
player and posses little to no risk.

• Merchant Shop

Figure 11. Merchant shop encounter (Source: Screenshot taken from the game)

In the merchant shop encounter, the player can trade
currency gained from other encounters to gain a select choice
of rewards. There is always a risk that the currency the player
has is not sufficient to trade with anything meaningful.
However, the risk it has is still very miniscule and in most
cases, the encounter is still beneficial to the player.

• Enemy

Figure 12. Enemy encounter (Source: Screenshot taken from the game)

This encounter is the most common encounter of the game.
In this encounter, the player is put into combat against
randomly selected regular enemy of the act. If the player won
the combat, he is granted a moderate reward. Because of this,
there is a risk of dying and failing the run. However, the
difficulty, and ultimately the risk, is not as high as fighting an
elite enemy.

• Elite

Figure 13. Elite encounter (Source: Screenshot taken from the game)

In the elite encounter, the player is put into combat against
a randomly selected elite enemy of the act. While granting
greater rewards compared to regular enemies, elite enemies are
much tougher compared to their regular counterpart. They also
have their own quirks, making this encounter significantly
more difficult compared to regular enemy encounters, thus
making this encounter highly risky.

• Unknown Room

Figure 14. Unknown encounter (Source: Screenshot taken from the game)

In unknown room encounters, the player is presented with a
randomly selected event from the current act events pool.
These random events can have a wide variety of effects, risks,
and rewards. Several events are purely beneficial events or
events with great reward but little risk. However, there are also
events that throws the player in a very risky situation, such as
fighting two elite enemies back to back, or even throws the
player into a high risk situation with little reward. Because of
its high randomness, going into this encounter is a high risk
gambit with potentially great reward.

• Buffed Elite

Figure 15. Buffed elite encounter (Source: Screenshot taken from the game)

The buffed elite encounter only starts to appear after the
player has completed the game atleast once with the first three
characters. In this encounter, the player will be put into combat
against a buffed elite enemy. The elite enemy will receive
several buffs during combat, making this encounter much
harder even compared to just elite encounter. However, the
reward gained on this encounter is necessary to access the
fourth hidden act. Nonetheless this encounter still posses a
very high risk as it is simply a harder elite encounter.

 Based on explanation above, each encounter can be
classified as the following:

Figure 16. Encounter risk levels (Source: writer’s repertoire)

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2020/2021

B. Graph Representation and Heurestics

The objective of the game is to reach the current act boss

and defeating it. The map of each act is generated randomly so

that each map can have several possible paths towards the

boss. Each paths has different encounters, which offers

differing risks and rewards. The player is expected to manage

the risk and reward balance by choosing appropriate paths.

Too high of a risk, and the player character will die, thus

failing the run. This paper focuses on determining the paths

with the least risk.

The map of each act can be represented as a directed

weighted graph. The edges are directed because the player

cannot backtrack to encounters on the floor below the current

floor. The weight each edge is determined by the risk

associated with the encounter on the target node. Low risk

encounter has 1 weight value, medium risk has 2, high risk has

3, and very high risk has 4. Unavoidable risk encounter has 0

weight value as the still paths have to go through it under any

circumstances, making its weight irrelevant. Below is an

example map from the game followed by its graph

representation:

Figure 17. Slay The Spire map example (Source: Screenshot taken from the
game)

Figure 18. Graph representation of the example map (Source: writer’s
repertoire)

Figure 19. Graph legend (Source: writer’s repertoire)

Node notation used on the graph:

XY-Z (3)

Where X is the floor number of the encounter, Y is the
encounter identifier on each floor, and Z is the encounter type.

 Note that all encounters before the boss are always rest
encounters and are all linked to the boss encounter, thus it can
be simplified as in the graph representation. Also note that
encounter 0 is used as a dummy node for coding purposes and
the last two floors do not have Y value due to being the only
encounter on the floor.

The A* algorithm is type of Informed Search. That means

it needs information regarding its goal, usually in the form of

an estimation or value called heuristic. The heuristics for this

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2020/2021

calculation will be the amount of floor needed to be climbed to

reach the boss. Taking from the example above, the map has

sixteen floors and thus the heuristic at the first floor

encounters will be fifteen, reduced to fourteen on second floor

encounters, and so on until it reaches zero on the boss floor.

The following is a table of the graph that includes the heuristic

values:

Figure 20. Table representation of the graph (Source: writer’s repertoire)

Note that the data on the spreadsheet is in reversed order, start
to goal instead of goal to start as with the previous graph. This
is done to ease data input process in the algorithm.

 The heuristics here is used to enforce the directed nature of
the graph. It also enforces the game’s rule as the player cannot
backtrack to an encounter on the previous floor.

C. The Algorithm

A* algorithm will be used to determine the paths with the

lowest risk. As explained previously, A* search algorithm

uses the following evaluation function:

f(n) = g(n) + h(n) (4)

Using it for the paper’s purpose, the ‘cost’ for the function

would be the risk taken on an encounter. That means g(n)

would be the sum of risk taken so far to reach encounter n. For

h(n), we can use the heuristics determined previously for each

encounter on each floor.

The following is a snippet of the algorithm implemented in

Python 3 for this particular purpose:

Figure 21. Snippet of A*implementation in Python 3 (Source: writer’s
repertoire)

The implementation above follows an example from

https://www.annytab.com/a-star-search-algorithm-in-python/

with several modifications to fit the paper’s purposes.

The code above will be ran for every node expansion the

algorithm does. The algorithm will expand its search

according to the sorted content of expand list. The list itself is

sorted from the lowest risk to highest. The expansion will

continue until the goal has been reached or the expand list is

empty, meaning there is no possible path.

D. Source Code and Testing

The source code used for testing, along with the test files,

can be accessed from https://github.com/SleipnirMk1/Astar-

SlayTheSpire . In the code, Graph class is used to represent

the graph data representation from the game map, while the

Node class is used to represent encounters.

Figure 22. Graph and Node class (Source: writer’s repertoire)

 The program receives map data input through a customized
txt file, below is the content txt file for the example map above:

Figure 23. Txt file for example map (Source: writer’s repertoire)

The first part of the text file is the floor amount, it is used to
determine the heuristics. The next part is the encounters. Here,
all encounters from the map are listed per floor with space or
tab as separator for encounters on the same floor. 0-ST
encounter is used as a dummy node for processing purposes.
The last part is the links. Here, all links from certain encounters
are listed per floor with space or tab as separator for different
encounter source.

 The txt file above is processed by readFile function which
also assigns the risk levels for each encounter. A graph from

https://www.annytab.com/a-star-search-algorithm-in-python/
https://github.com/SleipnirMk1/Astar-SlayTheSpire
https://github.com/SleipnirMk1/Astar-SlayTheSpire

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2020/2021

the file is then built to represent the map from the game by the
buildGraph function.

Figure 24. readFile and buildGraph function (Source: writer’s repertoire)

 The entire program is ran with the main function, where it
serves as an interface (Command Line Interface) for inputing
files and generating paths from a certain starting node, not just
from the bottom floor, based on inputs from the user.

 Below is a test run done with the previous example map
from the game:

Figure 25. Test run 1 (Source: writer’s repertoire)

The program yields the following path from the graph above:

Figure 26. Test first path (Source: writer’s repertoire)

As visible above, the program avoids the cluster of elites and
unknown rooms on the left of the graph. It also avoids
encounter with the buffed elite and yields a path with
cummulative risk value of 26.

 The program can also receive input where the starting node
is not from node 0, as shown below:

Figure 27. Test run 2 (Source: writer’s repertoire)

The program yields the following path from the graph above:

Figure 28. Test second path (Source: writer’s repertoire)

As visible above, the algorithm starts its search from node 9B
as instructed. The algorithm does not just direct the path to the
previous low risk path, it still searches path that is the lowest
risk from the new starting node. Because of that, the resulting
path is visibly different from the previous path, as returning to
the previous path means encountering a buffed elite, a very
high risk encounter.

 A full test run can be seen in the youtube video linked on
the following section. As for the source code, as stated before,
it can be accessed, along with the test file from
https://github.com/SleipnirMk1/Astar-SlayTheSpire .

IV. CONCLUSION

The A* algorithm’s performance and accuracy has been

proven countless times before, as it can consistently provide

the most optimal pathing while maintaing time and processing

complexity. This paper is no different, it proved that A*

Algorithm is still very reliable when it comes to pathfinding,

as it is always capable of finding paths with the lowest

possible risk in Slay The Spire. With some tweaking, it can

also find paths with highest risk too.

However, winning in Slay The Spire is not just about

taking the least, or most, risk. Taking less risky paths can

potentially limit the character’s power growth from the

rewards gained, and thus dooming the run in the long term.

https://github.com/SleipnirMk1/Astar-SlayTheSpire

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2020/2021

Slay The Spire is about risk and reward management, the

player must balance between the two aspects in order to both

reach the endgame and build-up enough power to survive the

endgame.

One advice the writer can give as an experienced player, is

that the paths provided by this algorithm should not be treated

as a strict guideline, instead it is adviced to mix-up the path by

taking risky paths near the safer paths. That way the high

rewards from high risk encounters can still be gained while

having a safety net to fall into when the risk becomes too

much to handle. For example, in figure 25, a possible mix-up

would be to pick encounter 10D and 11C and then fall back

into encounter 12C instead of following the path suggested by

the algorithm.

Perhaps it is possible to create an algorithm where it also

considers the rewards, not just the risks, on each paths, and

while at it, also considers the location of certain types of

encounter. For example, an elite encounter on higher floors is

less risky compared to elite encounter on lower floors.

Unfortunately, such sophisticated algorithm is not within the

current capability of the writer.

In conclusion, the A* algorithm is proven to be accurate

when determining the lowest risk path possible during a run in

Slay The Spire. Further development for the algorithm may

include reward assesment and evaluating certain encounter’s

location to determine, not the lowest risk path, but the most

optimal path.

VIDEO LINK AT YOUTUBE

https://youtu.be/DVPd3uV949w

GITHUB REPOSITORY

https://github.com/SleipnirMk1/Astar-SlayTheSpire

ACKNOWLEDGEMENT

In this section I would like to express my gratitude towards
God, my friends, and my family for supporting me all the way
up to this point of my life where I finish this paper. I would
also like to express my gratitude to Ir. Rila Mandala,
M.Eng.,Ph.D. as my lecturer and also to the entire ITB
informatics study lecturers. It is thanks to their efforts that I am
able to finish this paper and understand the various algorithm
strategies commonly used in programming. These strategies are
very fascinating to learn and I am certain it will be very useful
for me in the future. Lastly I would like to apologize for any
mistakes that occured in the process of making this paper. I

hope this paper can help and inspire other people to learn, think
rationally, and perhaps spark interest in the game I like so
much.

REFERENCES

[1] Munir. Rinaldi, “Graf (Bag.1)”,
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2020-2021/Graf-
2020-Bagian1.pdf, 2020, Accessed 8 May 2021.

[2] Munir, Rinaldi, “Penentuan Rute (Route/Path Planning) Bagian 1: BFS,
DFS, UCS, Greedy Best First Search”,
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/Route-
Planning-Bagian1-2021.pdf, 2021, Accessed 8 May 2021.

[3] Munir, Rinaldi, “Penentuan Rute (Route/Path Planning) Bagian 2:
Algoritma A*”,
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/Route-
Planning-Bagian2-2021.pdf , 2021, Accessed 8 May 2021.

[4] Red Blob Games, “Amit’s A* Pages”,
http://theory.stanford.edu/~amitp/GameProgramming/, 1997, Accessed 9
May 2021.

[5] Administrator, “A* Search Algorithm in Python”,
https://www.annytab.com/a-star-search-algorithm-in-python/, 22 Jan.
2020, Accessed 9 May 2021.

[6] Red Blob Games, “Introduction to the A* Algorithm”,
https://www.redblobgames.com/pathfinding/a-star/introduction.html, 26
May 2014, Accessed 10 May 2021.

[7] Mega Crit Games, “Slay the Spire”,
https://store.steampowered.com/app/646570/Slay_the_Spire/, 23 Jan.
2019, Accessed 10 May 2021.

[8] Brewer, Nathan. “Going Rogue: A Brief History of the Computerized
Dungeon Crawl ”, 7 Jul. 2016,
https://web.archive.org/web/20160919020229/http://insight.ieeeusa.org/i
nsight/content/views/371703, Accessed 11 May 2021

[9] International Roguelike Development Conference, “Berlin
Interpretation”, 2008,
http://www.roguebasin.com/index.php?title=Berlin_Interpretation,
Accessed 11 May 2021

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

Bekasi, 11 Mei 2021

Ilyasa Salafi Putra Jamal dan 13519023

https://youtu.be/DVPd3uV949w
https://github.com/SleipnirMk1/Astar-SlayTheSpire
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2020-2021/Graf-2020-Bagian1.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2020-2021/Graf-2020-Bagian1.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/Route-Planning-Bagian1-2021.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/Route-Planning-Bagian1-2021.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/Route-Planning-Bagian2-2021.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/Route-Planning-Bagian2-2021.pdf
http://theory.stanford.edu/~amitp/GameProgramming/
https://www.annytab.com/a-star-search-algorithm-in-python/
https://www.redblobgames.com/pathfinding/a-star/introduction.html
https://store.steampowered.com/app/646570/Slay_the_Spire/
https://web.archive.org/web/20160919020229/http:/insight.ieeeusa.org/insight/content/views/371703
https://web.archive.org/web/20160919020229/http:/insight.ieeeusa.org/insight/content/views/371703
http://www.roguebasin.com/index.php?title=Berlin_Interpretation

